2,321 research outputs found

    Prospects for the Development of Fast-Light Inertial Sensors

    Get PDF
    Next-generation space missions are constrained by existing spacecraft navigation systems which are not fully autonomous. These systems suffer from accumulated dead-reckoning errors and must therefore rely on periodic updates provided by supplementary technologies that depend on line-of-sight signals from Earth, satellites, or other celestial bodies (e.g., GPS, star-trackers) for absolute attitude and position determination, which can be spoofed, incorrectly identified, occluded, obscured, attenuated, or insufficiently available. These dead-reckoning errors originate in the accelerometers and ring laser gyros (RLGs) themselves, which constitute inertial measurement units (IMUs). Increasing the time for standalone spacecraft navigation therefore requires fundamental improvements in the precision of inertial sensors. The conventional method of increasing the precision of an optical gyro is to increase its size, but this is problematic in spaceflight where size and weight are at a premium. One promising solution to enhance gyro precision without increasing size is to place an anomalous dispersion or fast-light (FL) material inside the gyro cavity. The FL essentially provides a positive feedback to the gyro response, resulting in a larger measured beat frequency for a given rotation rate as shown in figure 1

    Self Assembly of Soft Matter Quasicrystals and Their Approximants

    Full text link
    The surprising recent discoveries of quasicrystals and their approximants in soft matter systems poses the intriguing possibility that these structures can be realized in a broad range of nano- and micro-scale assemblies. It has been theorized that soft matter quasicrystals and approximants are largely entropically stabilized, but the thermodynamic mechanism underlying their formation remains elusive. Here, we use computer simulation and free energy calculations to demonstrate a simple design heuristic for assembling quasicrystals and approximants in soft matter systems. Our study builds on previous simulation studies of the self-assembly of dodecagonal quasicrystals and approximants in minimal systems of spherical particles with complex, highly-specific interaction potentials. We demonstrate an alternative entropy-based approach for assembling dodecagonal quasicrystals and approximants based solely on particle functionalization and shape, thereby recasting the interaction-potential-based assembly strategy in terms of simpler-to-achieve bonded and excluded-volume interactions. Here, spherical building blocks are functionalized with mobile surface entities to encourage the formation of structures with low surface contact area, including non-close-packed and polytetrahedral structures. The building blocks also possess shape polydispersity, where a subset of the building blocks deviate from the ideal spherical shape, discouraging the formation of close-packed crystals. We show that three different model systems with both of these features -- mobile surface entities and shape polydispersity -- consistently assemble quasicrystals and/or approximants. We argue that this design strategy can be widely exploited to assemble quasicrystals and approximants on the nano- and micro- scales. In addition, our results further elucidate the formation of soft matter quasicrystals in experiment.Comment: 12 pages 6 figure

    Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase

    Full text link
    We present results of molecular simulations that predict the phases formed by the self-assembly of model nanospheres functionalized with a single polymer "tether", including double gyroid, perforated lamella and crystalline bilayer phases. We show that microphase separation of the immiscible tethers and nanospheres causes confinement of the nanoparticles, which promotes local icosahedral packing that stabilizes the gyroid and perforated lamella phases. We present a new metric for determining the local arrangement of particles based on spherical harmonic "fingerprints", which we use to quantify the extent of icosahedral ordering.Comment: 8 pages, 4 figure

    George C. Marshall Space Flight Center Research and Technology Report 2014

    Get PDF
    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery

    Development of a Simulation Framework for CubeSat Performance Modeling

    Get PDF
    Space systems are notoriously difficult to develop due to the nature of the environment in which they must operate. Designers have only a limited window to ensure systems will function as intended, placing a high importance on testing. This paper discussed the ongoing development of a simulation framework to support Hardware-in-the-Loop (HIL) testing of CubeSat subsystem hardware. This work is being conducted at the Air Force Institute of Technology (AFIT) in support of the institution’s CubeSat program. The simulation framework is organized into the classic spacecraft subsystems. Each of these subsystems will support a software model and interfaces for the integration of flight hardware into the simulation framework. In demonstration of this concept, propulsion hardware has been successfully integrated into the model environment. Telemetry reception and command transmission within the simulation framework is functional and demonstrated. A loop containing the propulsion hardware, simple controller, and orbital motion propagator was developed to demonstrate the HIL test functionality of the simulation framework. This focus on the development of the propulsion HIL test configuration is a point of distinction from other HIL simulations, which typically focus on the Attitude Determination and Control System (ADCS). Presented results validate successful integration of propulsion subsystem hardware into the simulation framework. Future work will focus on the integration of CubeSat subsystem models into the framework

    Marshall Space Flight Center Research and Technology Report 2015

    Get PDF
    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life

    A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    Get PDF
    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year

    Advanced Avionics and Processor Systems for Space and Lunar Exploration

    Get PDF
    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year
    • …
    corecore